top
请输入关键字
助理教授,研究员,博士生导师
电子邮箱:chensen_ding@pku.edu.cn
研究方向:
计算力学(数值模拟)算法和工业软件开发,数据驱动/人工智能算法、软件和应用,装备不确定性和可靠性分析优化,结构/材料一体化分析优化和智造。
招聘信息:
每年招收1位博士和多位硕士。欢迎具有力学、机械/土木、计算机、应用数学或其他相关领域的学历和科研背景,热爱科研、勤奋踏实,有强烈自驱力和主观能动性的同学申报。常年招聘博士后、联合培养研究生和本科生进行科研活动,欢迎有兴趣者请邮件联系。

工作经历:
2022 - 今 6163am银河线路,6163am银河线路力学与工程科学系,助理教授、研究员、博导、计算力学和数据驱动工程课题组长
2020 – 2022 英国埃克塞特大学,数据科学与人工智能研究所,博士后研究员
2018 – 2020 卢森堡大学,计算和数据科学研究所,博士后

教育经历:
2011 – 2018 湖南大学,汽车车身先进设计制造国家重点实验室,力学/机械工程,硕博
(2016 – 2018 美国明尼苏达大学,美国国防高性能计算中心,国家联合培养博士)
(2012 – 2014 6163am银河线路,北京市虚拟仿真与可视化工程技术研究中心,联合培养硕士)
2007 – 2011 湖南大学,车辆工程,工学学士
学术服务:
受国际工业与应用数学(SIAM) 和欧洲应用科学计算方法 (ECCOMAS)等协会邀请作国际会议专题报告;担任 Applied Mathematical Modelling、Journal of Computational Science、Composites Part B: Engineering、International Journal of Heat and Mass Transfer、Thin-Walled Structures 等近20个国际顶级/著名期刊客座编辑、编委和审稿人。
部分论文列表:

[1]     C.S. Ding, R.R. Deokar, H.J. Lian, Y.J. Ding, G.Y. Li, X.Y. Cui, K.K. Tamma. S.P.A. Bordas. Resolving high frequency issues via proper orthogonal decomposition based dynamic isogeometric analysis for structures with dissimilar materials. Computer Methods in Applied Mechanics and Engineering. 359(2020)112753.

[2]     C.S. Ding, R.R. Deokar, Y.J. Ding, G.Y. Li, K.K. Tamma, X.Y. Cui, S.P.A. Bordas. Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties. Computer Methods in Applied Mechanics and Engineering, 349(2019) 266-284.

[3]     C.S. Ding, X.B. Hu, X.Y. Cui, G.Y. Li, Y. Cai, K.K. Tamma, Isogeometric generalized nth order perturbation-based stochastic method for exact geometric modeling of (composite) structures: Static and dynamic analysis with random material parameters. Computer Methods in Applied Mechanics and Engineering, 346(2019) 1002-1024.

[4]     C.S. Ding, X.Y. Cui, G.Y. Huang, G.Y. Li, K.K. Tamma, Exact and efficient isogeometric reanalysis of accurate shape and boundary modifications. Computer Methods in Applied Mechanics and Engineering,318(2017) 619-635.

[5]     C.S. Ding, K.K. Tamma, H. Lian, Y. Ding, T.J. Dodwell, S.P.A. Bordas, Uncertainty Quantification of spatially uncorrelated loads with a reduced-order stochastic isogeometric method. Computational Mechanics 67 (2021) 1255–1271.

[6]     C.S. Ding, X.Y. Cui, R.R. Deokar, G.Y. Li, Y. Cai, K.K. Tamma, Proper orthogonal decomposition Monte Carlo simulation based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties. Computational Mechanics, 63(3) (2019)521-533.

[7]     C.S. Ding, X.Y, Cui, G.Y. Li, Accurate analysis and thickness optimization of tailor rolled blanks based on isogeometric analysis. Structural and Multidisciplinary Optimization, 54(4) (2016) 871-887.

[8]     C.S. Ding, K.K. Tamma, Y.J. Ding, X.Y. Cui, G.Y. Li, S.P.A. Bordas. A n-th order perturbation based stochastic isogeometric method for quantifying geometric uncertainty in shell structures. Advances in Engineering Software, 148 (2020) 102866.

[9]     C.S. Ding, X.Y. Cui, R.R. Deokar, G.Y. Li, Y. Cai, K.K. Tamma, Modeling and simulation of steady heat transfer analysis with material uncertainty: Generalized nth order perturbation isogeometric stochastic method. Numerical Heat Transfer, Part A: Applications. 74(09) (2018)1565-1582. (IF= 2.928, JCR Q2)

[10]  C.S. Ding, X.Y. Cui, R R. Deokar, G.Y. Li, Y. Cai, K.K. Tamma, An isogeometric independent coefficients (IGA-IC) reduced order method for accurate and efficient transient nonlinear heat conduction analysis. Numerical Heat Transfer, Part A: Applications, 73(10) (2018) 667-684.

[11]  C.S. Ding, X.Y. Cui, G.X. Huang, G.Y. Li, K.K. Tamma, Isogeometric independent coefficients method for fast reanalysis of structural modifications. Engineering Computations. 37(4) (2019) 1341-1368.

[12]  C.S. Ding, X.Y. Cui, G.X. Huang, G.Y. Li, Y. Cai, K.K. Tamma, A gradient-based shape optimization scheme via isogeometric exact reanalysis. Engineering Computations, 35 (8) (2018) 2696-2721.  

[13]  C.S. Ding, X.Y. Cui, G.Y. Li, A multi-level refinement adaptive scheme with high efficiency and accuracy, Engineering Computations, 33(7) (2016) 2216-2236.

[14]  B. Wang, Y. Cai*, X.Y. Cui, C.S. Ding*, Z.C. Li,Stochastic stable node-based smoothed finite element method for uncertainty and reliability analysis of thermo-mechanical problems. Engineering Analysis with Boundary Elements 114 (2020) 23-44.

[15]  L.L. Chen, Y. Zhang, H. Lian∗, E. Atroshchenko, C.S. Ding, S.P.A. Bordas, Seamless integration of computer-aided geometric modeling and acoustic simulation: isogeometric boundary element methods based on Catmull-Clark subdivision surfaces. Advances in Engineering Software 149 (2020). 102879.