1. Ling Hsiao, and Shaoqiang Tang, Construction and Qualitative Behavior of Solutions of Perturbated Riemann Problem for the System of One-Dimensional Isentropic Flow with Damping, J. Diff. Eqs. 123(2):480-503(1995).
2. Din-Yu Hsieh, Shaoqiang Tang, Xiao-Ping Wang, and Li-Xin Wu, Dissipative Nonlinear Evolution Equations and Chaos, Studies in Applied Mathematics 101:233-266(1998).
3. Ansgar Juengel, and Shaoqiang Tang, Numerical approximation of the viscous quantum hydrodynamic model for semiconductors, Applied Numerical Mathematics, 56(7):899-915 (2006).
4. Shaoqiang Tang, Thomas Y. Hou, and Wing Kam Liu, Mathematical framework of bridging scale method, Int J Numer Methods Engrg. 65(1):1688-1713 (2006).
5. Shaoqiang Tang, A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids, J Comput Phys. 227:4038-4062 (2008).
6. Xianming Wang, and Shaoqiang Tang, Matching boundary conditions for diatomic chains, Computational Mechanics 46(6):813-826 (2010).
7. Gang Pang, and Shaoqiang Tang. Approximate linear relations for Bessel functions. Communications in Mathematical Sciences 15(7):1967-1986 (2017).
8. Shaoqiang Tang, and Yuping Ying, Homogenizing atomic dynamics by fractional differential equations, Journal of Computational Physics. 346:539-551(2017).
9. Shaoqiang Tang, Lei Zhang, and Wing Kam Liu. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study, Computational Mechanics 62(6):1443-1460 (2018).
10. Lei Zhang, Lin Cheng, Hengyang Li, Jiaying Gao, Cheng Yu, Reno Domel, Yang Yang, Shaoqiang Tang, Wing Kam Liu. Hierarchical deep-learning neural networks: finite elements and beyond, Computational Mechanics 66(1): 207-230 (2021).
近5年来发表论文:
1. Xi Zhu, Lei Zhang, Shaoqiang Tang. Adaptive selection of reference stiffness in virtual clustering analysis, Computer Methods in Applied Mechanics and Engineering, 376:113621 (2021).
2. Shaoqiang Tang, Yang Yang. Why neural networks apply to scientific computing? Theoretical and Applied Mechanics Letters 11(3):100242 (2021).
3. Shaoqiang Tang, Gang Pang. Accurate boundary treatment for Riesz space fractional diffusion equations, Journal of Scientific Computing 89:42 (2021).
4. Lei Zhang, Ye Lu, Shaoqiang Tang, Wing Kam Liu. HiDeNN-TD: reduced-order hierarchical deep learning neural networks, Computer Methods in Applied Mechanics and Engineering, 389:114414 (2022).
5. Chenxi Zheng, Shaoqiang Tang. New transparent boundary condition for simulating rogue wave solutions in the nonlinear Schrodinger equation, Physical Review E 106 055302 (2022).
6. Yang Yang, Tongrui Liu, M.H. Aliabadi, Shaoqiang Tang, Virtual clustering analysis for long fiber reinforced composites, Computational Mechanics 71:1139-1159 (2023).
7. Xi Zhu, Shaoqiang Tang, Clustering Analysis for elastodynamic homogenization, Computational Mechanics. online (2023).
8. Kang Wang, Lei Zhang, Shaoqiang Tang. Discovery of PDEs driven by data with sharp gradient or discontinuity, Computers and Mathematics with Applications 140: 33-43 (2023).
9. Xinyi Guan, Shaoqiang Tang, Wing Kam Liu. Solving diffusive equations by proper generalized decomposition with preconditioner, Computational Mechanics. online (2023).
10. Lei Zhang, Chanwook Park, Ye Lu, Hengyang Li, Satyajit Mojumder, Sourav Saha, Jiachen Guo, Yangfan Li, Trevor Abbott, Gregory J. Wagner, Shaoqiang Tang, Wing Kam Liu. Isogeometric Convolution Hierarchical Deep-learning Neural Network: Isogeometric Analysis with Versatile Adaptivity, Computer Methods in Applied Mechanics and Engineering, online (2023).