top
请输入关键字
王圣凯
博士、助理教授、研究员
6163am银河线路力学与工程科学系助理教授
6163am银河线路工程科学与新兴技术高精尖创新中心Co-PI
电子邮箱:sk.wang@pku.edu.cn
主要研究方向:
高温气体的精密激光测量方法,燃烧学以及空气动力学的实验研究
个人简介:
王圣凯的研究方向位于光学科学、热能工程、流体力学的前沿交叉点,具体包括开发高灵敏度激光传感器以及多物理量场精密激光光谱学测量方法,并将其应用于研究气体反应以及动力学过程,揭示其中的物理化学机制。
教育经历:
2012-2017, 博士: 斯坦福大学(Stanford University) 专业:机械工程

2012-2017, 博士辅修:斯坦福大学(Stanford University) 专业:电气工程

2010-2012, 硕士: 斯坦福大学(Stanford University) 专业:机械工程

2006-2010, 学士: 6163am银河线路 专业:理论与应用力学
主要科研工作经历:
2020-至今, 6163am银河线路,助理教授

2016-2020, 美国斯坦福大学,高温气体动力学实验室,博士后
主要荣誉:
· Bernard-Lewis Fellowship, 2016
主要论文列表:
Ding, Y., Wang, S.* and Hanson, R.K., Sensitive and interference-immune formaldehyde diagnostic for high-temperature reacting gases using two-color laser absorption near 5.6 µm. Combust. Flame, 2020; 213: 194-201.
Clayman, N.E., Manumpil, M.A., Matson, B.D., Wang, S., Slavney, A.H., Sarangi, R., Karunadasa, H.I. and Waymouth, R.M.*, Reactivity of NO2 with Porous and Conductive Copper Azobispyridine Metallopolymers. Inorg. Chem., 2019; 58(16): 10856-10860.
Wang, S.* and Hanson, R.K., Quantitative 2-D OH thermometry using spectrally resolved planar laser-induced fluorescence. Opt. Lett. 2019; 44(3): 578-581.
Chao, X.*, Shen, G., Sun, K., Wang, Z., Meng, Q., Wang, S. and Hanson, R.K., Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization. Proc. Combust. Inst., 2019; 37(2): 1345-1353.
Wang, S.*, Davidson, D.F. and Hanson, R.K., Shock tube measurements of OH concentration time-histories in benzene, toluene, ethylbenzene and xylene oxidation. Proc. Combust. Inst., 2019; 37(1): 163-170.
Wei, W., Peng, W.Y., Wang, Y., Choudhary, R., Wang, S., Shao, J.* and Hanson, R.K., Demonstration of non-absorbing interference rejection using wavelength modulation spectroscopy in high-pressure shock tubes. Appl. Phys. B, 2019; 125(1): 9.
Campbell, M.F.*, Wang, S., Davidson, D.F. and Hanson, R.K., Shock tube study of normal heptane first-stage ignition near 3.5 atm. Combust. Flame, 2018; 198: 376-392.
Wang, S.* and Hanson, R.K., 2018. Ultra-sensitive spectroscopy of OH radical in high-temperature transient reactions. Opt. Lett. 2018; 43(15): 3518-3521.
Shao, J., Zhu, Y., Wang, S., Davidson, D.F.* and Hanson, R.K., A shock tube study of jet fuel pyrolysis and ignition at elevated pressures and temperatures. Fuel, 2018; 226: 338-344.
Xu, R., Wang, K., Banerjee, S., Shao, J., Parise, T., Zhu, Y., Wang, S., Movaghar, A., Lee, D.J., Zhao, R., Han, X., Gao, Y., Lu, T., Brezinsky, K., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., Wang, H.*, A physics-based approach to modeling real-fuel combustion chemistry–II. Reaction kinetic models of jet and rocket fuels. Combust. Flame, 2018; 193: 520-537.
Wang, S.* and Hanson, R.K., High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies. Appl. Phys. B, 2018; 124(3): 37.
Wang, S.*, Davidson, D.F. and Hanson, R.K., Shock tube and laser absorption study of CH2O oxidation via simultaneous measurements of OH and CO. J Phys. Chem. A, 2017; 121(45): 8561-8568.
Wang, S.*, Parise, T., Johnson, S.E., Davidson, D.F. and Hanson, R.K., A new diagnostic for hydrocarbon fuels using 3.41-µm diode laser absorption. Combust. Flame, 2017; 186: 129-139.
Wang, S.*, Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Time-resolved sub-ppm CH3 detection in a shock tube using cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser. Proc. Combust. Inst., 2017; 36(3): 4549-4556.
Wang, S.*, Davidson, D.F. and Hanson, R.K., Rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures. Proc. Combust. Inst., 2017; 36(1): 151-160.
Nations, M.*, Wang, S., Goldenstein, C.S., Davidson, D.F. and Hanson, R.K., Kinetics of Excited Oxygen Formation in Shock-Heated O2–Ar Mixtures. J. Phys. Chem. A, 2016; 120(42): 8234-8243.
Wang, S., Davidson, D.F.* and Hanson, R.K., Shock Tube measurement for the dissociation rate constant of acetaldehyde using sensitive CO diagnostics. J. Phys. Chem. A, 2016; 120(35): 6895-6901.
Wang, S., Davidson, D.F.* and Hanson, R.K., Improved shock tube measurement of the CH4+ Ar= CH3+ H+ Ar rate constant using UV cavity-enhanced absorption spectroscopy of CH3. J. Phys. Chem. A, 2016; 120(28): 5427-5434.
Wang, S.*, Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube. Opt. Express, 2016; 24(1): 308-318.
Wang, S., Sun, K., Davidson, D.F.*, Jeffries, J.B. and Hanson, R.K., Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO. J. Phys. Chem. A, 2015; 119(28): 7257-7262.
Wang, S.*, Davidson, D.F. and Hanson, R.K., High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proc. Combust. Inst., 2015; 35(1): 473-480.
Campbell, M.F.*, Wang, S., Goldenstein, C.S., Spearrin, R.M., Tulgestke, A.M., Zaczek, L.T., Davidson, D.F. and Hanson, R.K., Constrained reaction volume shock tube study of n-heptane oxidation: Ignition delay times and time-histories of multiple species and temperature. Proc. Combust. Inst., 2015; 35(1): 231-239.
Nations, M.*, Wang, S., Goldenstein, C.S., Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy. Appl. Opt. 2015; 54(29): 8766-8775.
Wang, S., Li, S., Davidson, D.F.* and Hanson, R.K., Shock Tube Measurement of the High-Temperature Rate Constant for OH+ CH3→ Products. J. Phys. Chem. A, 2015; 119(33): 8799-8805.
Sur, R.*, Wang, S., Sun, K., Davidson, D.F., Jeffries, J.B. and Hanson, R.K., High-sensitivity interference-free diagnostic for measurement of methane in shock tubes. J. Quant. Spectrosc. Radiat. Transf., 2015; 156: 80-87.
Sun, K., Wang, S., Sur, R., Chao, X., Jeffries, J.B.* and Hanson, R.K., Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm. Opt. Express, 2014; 22(20): 24559-24565.
Sun, K., Wang, S., Sur, R., Chao, X., Jeffries, J.B.* and Hanson, R.K., 2014. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy. Opt. Express, 2014; 22(8): 9291-9300.
Wang, S., Dames, E.E., Davidson, D.F.* and Hanson, R.K., Reaction rate constant of CH2O+ H= HCO+ H2 revisited: a combined study of direct shock tube measurement and transition state theory calculation. J. Phys. Chem. A, 2014; 118(44): 10201-10209.
Xu, S., Thian, D., Wang, S., Wang, Y. and Prinz, F.B., Effects of size polydispersity on electron mobility in a two-dimensional quantum-dot superlattice. Phys. Rev. B, 2014; 90(14): 144202.
Hong, Z., Lam, K.Y., Sur, R., Wang, S., Davidson, D.F.* and Hanson, R.K., On the rate constants of OH+ HO2 and HO2+ HO2: A comprehensive study of H2O2 thermal decomposition using multi-species laser absorption. Proc. Combust. Inst., 2013; 34(1): 565-571.
Wang, S., Davidson, D.F.* and Hanson, R.K., High-temperature laser absorption diagnostics for CH2O and CH3CHO and their application to shock tube kinetic studies. Combust. Flame, 2013; 160(10): 1930-1938.
Hanson, R.K., Pang, G.A., Chakraborty, S., Ren, W., Wang, S. and Davidson, D.F.*, Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves. Combust. Flame, 2013; 160(9): 1550-1558.
招聘信息:
本课题组长期招收博士研究生以及博士后,同时欢迎本科生参与科研活动。 博士后招聘信息请见附件。